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ON CERTAIN FINITE-DIFFERENCE METHODS FOR FLUID DYNAMICS

AKIRA KASAHARA
National Center for Atmospheric Research, Boulder, Colo.

ABSTRACT

Two finite-difference methods for geophysical fluid problems are described, and stability conditions of these
schemes are discussed. These two schemes are formulated based upon a similar procedure given by Lax and

Wendroff in order to obtain a second-order accuracy in finite-difference equations.

However, the two schemes

show remarkable differences.in their computational stability. One scheme is stable, as one might expect, under the
usual stability conditions of Courant-Friedrichs-Lewy and Lax-Wendroff. However, the other scheme is conditionally
stable only if the flow is supercritical (supersonic in the case of gas dynamics) and unconditionally unstable if the

flow is subecritical (subsonic).

1. INTRODUCTION

In geophysical fluid problems, one must often solve
numerically the partial differential equations that govern
the one-dimensional motion of & homogeneous incompress-
ible fluid (e.g., Stoker [8]),
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where ¢ and z denote the time and the space variable.
u(=u(z,t)) and h(=h(z,t)) represent the speed and the
depth of the fluid, and ¢ stands for the acceleration due
to gravity. For this first-order system, the characteristic
directions r=dx:dt are defined by
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hence r=wu- \/gh. The system is hyperbolic since there
are two distinet real roots 7 (Courant and Hilbert [2]).

Richtmyer [?7] made a survey of difference methods
which are applicable to a hyperbolic system such as (1).
In this paper, we shall describe two additional finite-
difterence methods of second-order accuracy which are
formulated based upon a similar procedure given by
Lax and Wendroff [4]. Our main concern will be to
point out remarkable differences in the computational
stability of the two schemes in spite of close similarity.
In this discussion, stability will be taken to mean the
stability of the corresponding linearized system with
constant coetficients (Richtmyer [5]).

The linearized equations of (1) may be written as
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where O= \/g—H, H denotes a constant depth of the fluid,

w=u/C and h=h/H. Here U denotes a constant speed
of the fluid. From this point on, we shall omit writing

circumflex symbols for dimensionless variables % and A
whenever references are made to (2).

In order to write down difference equations, we shall
use a rectangular net in the 2-¢ plane, with spacings Az
and At. We abbreviate any function f(z,t) of z=lAz
and t=mAt as f; or [f]; where ! and m can be either
an integer or half an odd integer.

2. FINITE-DIFFERENCE METHOD |

In this scheme, there will occur values of % at integer
space points and half-odd-integer times, and values of & at
half-odd-integer space points and integer times as illus-
trated in figure 1. The following scheme was suggested
by Richtmyer [6], but its stability condition was not
discussed. The stability of a similar method is investi-
gated by Fischer [3], but the analysis is limited to long-
wave Fourier components.

The difference form of (2) may be written as

u’;“’zzu?_”z—U{-a—u} At—O(—g—Z)j tA,
n+1/2 du\* /2

hi+1/2—hz+1/2 { } —-C 'a_> At,
j+1/2 X/ i+1/2

*In the difference equations described in this note, the notations

GOl [ (S,

all have different meanings as defined respectively by (4), (5), in (5), and by (7).
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FicUrE l.—Lattice structure for method I: n and j are integers.

where n and j are integers, and (9f/0x)7 denotes the
evaluation of Of/ox at the time level m and the space
point I. For second-order accuracy in Az, we use the
centered approximation

O fPX)r = Terp—FT1s2) /A (4)

with Az as the difference interval. (This can be done,
because the space point [ falls in the middle of the two
adjacent points which carry values of f.)

In order to evaluate Ou/Ox at integer time levels (when
only A’s are available) and Oh/Ox at half-odd-integer
time levels (when only #’s are available), we expand these
derivatives into Taylor series in time and retain enough
terms to ensure that (3) has second-order accuracy in A,

as was done by Lax and Wendroff [4].

The results are
At 2 92:,"—1/2_ du\ »=112
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where (0f/0x)? denotes the evaluation of 3f/oz at the

time level m and the space point /. In contrast to the
formula (4), we use 2Az as the difference interval and

approximate
&)

(This is done because the space point [ coincides with one
of the points at which values of f appear.) Note that (2)
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is used to eliminate the time dependent terms in (5) and
(6). The evaluation of the second term in the brackets of
(5) and of (6) is not made at the same time level as for the
first term in the brackets, but this approximation causes
an error of only third order in A which can be neglected
in the scheme of second-order accuracy. Since h’s are
not available at integer space points and u’s are not at
half-odd-integer space points, the second term in the
brackets of (5) and (6) may be evaluated with the following
space averaging,
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where
azf m 'm 2
=l =27+ -0/ (ax)* 9)
Let us substitute in (3) typical Fourier terms
TR =12 gtk Gian
R g1 =hreit(GH1DA2)
With the aid of formulas (4)-(9) and calling
Q=1 sin #-+a(l—cos 6),
P=(2¢+}asin §) sin %’
At At
a=U EE’ g=C AT 6=FkAz,
a=1—af), d=—pP, (10)
we obtain from (3),
w1 2=qyr~ 12 dh, (11)
hn+1=dun+ll2_{_ahn. (12)

By eliminating "2 from (12) with the use of (11), we
have
un+1/2 un—l/2
hn+1 )=G< hn )
_[a d
G=<ad a,—}—d2>

is the amplification matrix. The von Neumann stability
condition requires that the eigenvalues of the amplifica-
tion matrix should not exceed unity in absolute value for

where
(13)

physically stable systems (e.g., Richtmyer [5]). The
eigenvalues of (13) are the roots of
N —(2a-+d)N4-a?=0. (14)

Although this is only a quadratic equation, the fact that
a and d are complex makes it difficult to see the conditions
for which [A\[<1. We, therefore, will discuss special cases
first.
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Case 1.1 in which C=0.

In case the gravity-wave speed C vanishes, we have
d=0 and the two equations (11) and (12) are uncoupled.
Equation (14) reduces to (A\—a)*=0 and

la]®*={1—a*(1—cos §) }*+a’ sin’ ¢,
=1—a*(1—a?) (1—cos §)°.

We wish |A| to be equal or less than unity; hence we must
have |e| <1 or
At
=l P
ui|s

(15)

for stability as discussed by Lax and Wendroff [4].

Case 1.2 in which U=0.

In case the advective flow speed U vanishes, equation
(14) reduces to

N—2 <1—2ﬁ2 sin? %) AM1=0.

To keep the roots of this equation in or on the unit circle,

. 6
we must have ‘B sin il <1lor

At
C Az <1 (16)
which is the well-known stability condition by Courant,
Friedrichs, and Lewy {1].

Case 1.3 in which U= C#=0.

In this general case, the roots of (14) were computed
numerically for various values of U, C, and 6 defined in
(10). In figure 2, the magnitude of the largest root is
plotted against || as the abscissa and g as the ordinate.
This largest root is found for =w, namely kAz=r.
Since k is the wave number defined by k=2=/L, where L
is the wavelength, the case of 6= corresponds to that of
L=2Ar, the shortest wavelength which the grid can
resolve. In this case, we have from (10) that

Q=2a, P=2i,
a=1—2a", d=—281.
Then, equation (14) reduces to
N—2{1—2(a*+B%) N (1—207)*=0.

The roots of this equation are

A=1—2(a?+p%) £+ 28+22+ 52 —1.

In figure 2, the curve 1=2a&’4- 3% is shown by the chain
line running through the trough of the contours. For
2a?+32<1 on the lert-hand side of the chain line, the two
roots become complex conjugate and their magnitudes are
both equal to |1 —2a? which does not depend upon the
parameter 3. For 2¢?+p82>1 on the right-hand side of
the chain line in figure 2, it can be shown that the two

Akira Kasahaia

29

0.7 —

06~

)

At

Ax
[e]
]

05

B(=C

04 -

03

02

1 ! | |
0 0l 02 03 04 05 06

07 08 09 IO
(= UL )

Fieure 2.—Magnitude of the largest root (@==) of equation (14),
plotted against |a] and 8 (method I).

roots are real and negative; one of the roots becomes
equal to —1 for a?+48=1 and the roots of (14) must all
lie in or on the unit circle for

IYAPW.Y _

One might say that the above stability condition is a
reasonable one and in fact one can ‘‘guess’” intuitively
this kind of result from the stability conditions (15) and
(16) of the two special cases. However, the stability
analysis of the next method will demonstrate an example
that such a “guess’ does not necessarily work.

3. FINITE-DIFFERENCE METHOD I

We will now modify the method I in the following
manner. In this scheme, there will appear values of u
at half-odd-integer times and integer space points (just
as in method I). However, values of % appear also at
integer space points but only at integer times (therefore
half-odd-integer space points are removed) as illustrated
in figure 3. The difference form of (2) may now be
written

ou | * Oh\™
n+1/2__, ,n—1/2 - —_ _
wit =y U{bx},At 0<bz>,At’

ah n+1/2 au n+1/2
n+l__pn__ iy _ Pt
B+l =R U{M}j At O<ax>, At (18)

Here, we have used the same notations as introduced in
method I. ’

As discussed in connection with (5) and (6), we expand
similarly
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Figure 3.—Lattice structure for method II: n and j are integers.
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Note that the second term in the brackets of (19) and
(20) can be computed at j-points directly. The first and
second derivatives are evaluated with the centered dif-
ference formulas (4), (7), and (9).

By introducing a typical Fourier term

fjm___fmeik(mz)

into (18) ‘and taking into account (19) and (20) with
formulas (4), (7), and (9), and calling

Q=1 sin 6+a(1—cos 0),

At At
a=U vy BZO—A_x’ 6=FkAz,
a:-l——aQ, bz—ﬁQ:

<un+1/2> <’U," 1/2>
hn+1

GE(a(;) a—ilib2>'

The eigenvalues of G are the roots of the equation

(21)
we obtain

where
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— (24BN +-a?=o0.

Case I11.1 in which C'=0.
The stability condition in this case is exactly the same
as that of Case 1.1, namely

(22)

At
}U Az <1. (23)
Case 11.2 in which U=0.
In this case, equation (22) reduces to
N —(2—@ sin? 6)A+1=0. (24)

To keep the roots of (24) in or on the unit circle, we must
have IB sin 0|<2 or

(25)
which corresponds to the C—F—L condition (16) of
Case 1.2.

Case 11.3 in which |U}l=C>0.

In this case, we have from (21) that a=1—a@ and
b=TFa@. Equation (22) reduces to

A—(1-Fa)A+a*=0 (26)

One of the roots of (26) i1s @ and the other is unity!
Therefore the stability in this case is determined only from
the condition that |¢] <1 which leads to the same condi-
tion as (15) discussed in Case 1.1.

Case 11.4 in which U C#0. ’

In this general case, the roots of (22) were calculated
numerically for various values of U, €, and 8 defined in
(21). In figure 4, the magnitude of the largest root of
(22) is plotted against |e] as the abscissa and 8 as the
ordinate. This largest root is obtained for 6==. In this
case, we have from (21) that

Q=20, a=1—202, b=—28a.
Equation (22) then reduces to
—2(1—20*+ 20265 A+ (1—20%)2=0.
The roots of this equation are
A=1—20"+20*8"% 208 V1—a*(2—F).

In figure 4, the curve 1=a?(2—g? is shown by a chain
line. For 1< a? (2—pB?) on the right-hand side of the chain
line, the two roots become complex conjugate and their
magnitudes are both equal to |1—2«? which does not
depend upon the parameter 8. For 1>a2(2—82) on the
left-hand side of the chain line in figure 4, it can be shown
that the two roots are real and positive, and one of the
roots (larger one) becomes greater than or equal to unity
depending upon 8> lal.

In conclusion, the method II is unconditionally unstable
for 0<|U|<C (i.e., a subcritical or subsonic flow) and
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Ficure 4.—Magnitude of the largest root (f=mw) of equation (22),
plotted against |a] and 8 (method II).

conditionally stable for [U}>C>0 (i.e.,, a supercritical
or supersonic flow) provided that |UAf/Az|<1, the
Lax-Wendroff condition. If U is zero, the stability
condition is CAt/(24az) <1.

4. REMARKS

When one wants to solve a partial differential equation
numerically, one must first write down a finite-difference
form of the differential equation and then study the
stability property of the difference equation before ever
attempting to integrate the equation. It is customary to
check the stability of the difference scheme in the von
Neumann sense, that is the stability of the corresponding
linearized system with constant coefficients. However,
it is not always easy to obtain analytically the von Neu-
mann condition for stability for the system in which
many physical factors such as advection, gravity waves,
dissipation, etc., are involved. It is tempting, therefore,
to introduce approximations of various degrees in order
to simplify the stability analysis. One of the common
approximations is to check the stability of difference
equations considering only one physical factor of the system
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at one time. Then one writes down a stability criterion
inclusive of all the stability conditions obtained separately
for every physical factor. By doing so, one simply hopes
that the combined stability criterion is as good as the
“complete’” stability condition which would take into
account all physical factors under consideration.

It was shown in this note that such a practice is a bad one
through the demonstration of a counter example to this
procedure. For such problems, it is recommended that
the evaluation of eigenvalues of the amplification matrix
should be performed analytically or numerically for
various values of all the physical parameters involved
in the system in order to determine the ranges of the
physical parameters for which the eigenvalues are equal
to or less than unity in magnitude for physically stable
systems, and the eigenvalues do not exceed 140 (A¢) for
problems in which there is & mechanism permitting a
erowth of the true solution.
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